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The method of constructing a local field operator for a composite particle, developed by Haag, Nishijima, 
and Zimmermann, is applied to an elementary particle field. It is shown that the HNZ construction as 
applied to a simple Lagrangian theory reproduces the original field operator. 

I. INTRODUCTION the Ward-Takahashi (W-T) relations given by 

IN connection with the problem of bound states a $ 

method has been introduced of constructing a local \~\x—T[An(%) • • • ] 
field operator for a composite particle by Haag,1 dx» 
Nishijima,2 and Zimmermann.3 We shall first describe _Fv" z( "\_i_- ^ 1 
properties of the field operator constructed by this ~~ \J^ 6a ^ dx~ 8A (X)J 
method. * /» A ; 

Let us assume that c is a scalar composite particle or more precisely by 
consisting of scalar particles a and b, then a field oper
ator for the particle c is given by the following ,_. " ^ r . , N . , A , s , . _, 
expression: D ^T{_A,{x )AM' ) - • • <?„(*.)*%(*»)• • •] 

r [ - - - ] , (2) 

<pc(x) = lim lim 

/ *\ / *\ 
:<pJ x-\— Jipjl x— 1: 

\ 2 / \ 2 / 

(2P 0 ) 1 ' a <0|^W--) lc^> 

(1) 

where colons denote the normal product and \c,P) 
stands for a one c-particle state with energy-momentum 
P. 

In Refs. (1), (2), and (3), it has been shown that the 
operator cpc(x) satisfies all the conditions required in 
the axiomatic field theory such as the local commuta-
tivity and the asymptotic condition. Therefore, in a 
non-Lagrangian approach, e.g., in dispersion theory, 
elementary and composite particles can be treated on 
an equal footing. This result has many applications to 
problems involving composite particles.4 The independ
ence of (pc{oc) on the choice of the direction of P, i.e., 
the right-transformation property of (pe(%), has been 
proved by Nishijima.5 It has also been proved that the 
distinction between elementary and composite particles 
through observation of electromagnetic interactions is 
not feasible.5 The proof is based on the observation that 

* Supported in part by the U. S. Atomic Energy Commission 
and by the National Science Foundation. 

1 R. Haag, Phys. Rev. 112, 669 (1958). 
2 K. Nishijima, Phys. Rev. I l l , 995 (1958). 
3 W. Zimmermann, Nuovo Cimento 10, 597 (1958). 
4 See, for instance, B. Sakita and C. J. Goebel, Phys. Rev. 126, 

1787 (1962); B. Sakita, ibid. 126, 1800 (1962). 
5 K. Nishijima, Phys. Rev. 122, 298 (1961). 

= [_ead(x—Xa)+ebd(x-~ xh)~{ ] 

d 
+i 8(X-X')TZ' "<pa(Xa)<Pb(xh)'"2+" ' (3) 

6Xy 

are valid not only for elementary particle fields cpa and 
cpb but also for the composite particle field <pc provided 
that ec=ea+eb. This consequence is characteristic of 
the HNZ construction (1). 

The observation mentioned above poses an interesting 
problem: Suppose that c is an elementary particle for 
which 

< 0 l * / - W — \c)9*Q, (4) 

then the HNZ construction can be applied to defining 
a field operator <pe'(x). Both the original field operator 
ipc and the new operator p/ satisfy exactly the same 
set of W-T relations as mentioned above, so that <pc 

and (pc
f should share various common properties. 

In fact, we can prove that 

<Pc=<Pc (5) 

in many simple cases, i.e., the original field operator is 
reproduced by the HNZ construction indicating that 
this construction is a very natural one. In the axiomatic 
theory, on the other hand, the equality is known only 
on the mass shell, or more precisely 

<Pcin=<Pc ^ c / o u t _ ^out^ (6) 
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In the next section the proof of this theorem will be 
given, and in the last section the physical interpretation 
of this theorm will be given. 

II. PROOF OF THE THEOREM 

The theorem expressed by Eq. (5) will be proved for a 
simple model described by the interaction 

Hint=g*^(p, (7) 

where ^ is a scalar nucleon field and p a neutral scalar 
meson field. The theorem in this model is given by 

<p(x) = \im lim 
S-»o £0-»o 

:K*+S*H) 
(2Po)1'2<0|W-V--V> 

ator by means of Eq. (8). Let us put 

( 2 P o ) 1 ' 2 ( 0 | ^ Q ^ _ ^ | p ) ^ / f e p ) , (11) 

and define its Fourier transform g(p,P) by 

/ ( £ , P ) = — - [d*pe***g(p,P). (12) 
(2TT)4 J 

The function /(£,P) is assumed to be singular at the 
origin £ = 0, and in order to study the nature of the 
singularity at the origin we shall appeal to an integral 
representation of the function g(pfP),7~n i.e., 

(8) g(p,P) = j dtj ds~ 
«({,*) 

[(*-$'+-<-r 
, (13) 

where ^ and <p are renormalized Heisenberg operators, 
and \P) denotes a one-meson state with energy-
momentum P. In order to prove Eq. (8), we shall as
sume the asymptotic condition of Lehmann, Symanzik, 
and Zimmermann (LSZ)6; then what we have to prove 
reduces to 

<oir[^Msc---]|o> 

<0|7T :&(x+-\r(x~ 

where N is a certain positive integer. By integration by 
part one can reduce the power N to unity, but it is not 
possible to increase the power N beyond a certain 
maximum value. In what follows we shall assume that 
N always stands for its maximum value. 

With the help of integral representation one can study 
the singularity of the function 

\:ABC- |0> 

Hm /(£,P) 

= lim lim -
at the origin | £ | = 0, i.e., 

(2P0)
1/2<0|*t| ex-D' 

C\ 

P) 

(9) 

since application of the LSZ reduction formula to (9) 
leads us to the desired relation 

<j8,out|?(*)|a,in) 

<|8,out| : W a + - W * — ) : |a,in) 

(a) i\T=l / & P ) = lim/(f,P) , (14a) 
So-*0 £ 2 

(b) N=2 / ( e ,P)~*ln | f | , (14b) 

(c) N=3 /(?,P)~finite. (14c) 

In the first and second cases, the ratio (7) is given by 

= lim lim -

(2P0)1/2(0|* t ex-:)' 
(10) 

lim lim ?:&(x+-mx—]: 
€-* €,-K) \ 2 / \ 2 / 

lim lim £2/(£,P) 
S-o *0-*o 

(15a) 

and 
p) lim lim £M— :&[ x+- W a 

\ 2/ V 
for an arbitrary pair of states a and /3, and hence equiva
lent to (8). 

Next we shall prove Eq. (9) for the model described 
by the interaction (7). The technique utilized in this 
proof is described at length in the appendix of Ref. (5), 
but for the sake of completeness we shall briefly re
capitulate the procedure of constructing the field oper-

(15b) 

lim lim i—mjP) 

6 H. Lehmann, K. Symanzik, and W. Zimmermann, Nuovo 
Cimento 1, 205 (1955). 

respectively. 

7 G. C. Wick, Phys. Rev. 96, 1124 (1954). 
8 R. E. Cutkosky, Phys. Rev. 96, 1135 (1954). 
9 S. Deser, W. Gilbert, and E. C. G. Sudarshan, Phys. Rev. 

115, 731 (1959). 
10 M. Ida, Progr. Theoret. Phys. (Kyoto) 23, 1151 (1960). 
11 N. Nakanishi, Phys. Rev. 127, 1380 (1962). 
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In what follows a prescription will be given for carry
ing out the double limiting procedure in momentum 
space: Introduce a function F(£) and its Fourier trans
form G{p) by 

F® (2xW 
d4pe^G(p); (16) 

then its double limiting value is given by 

1 
l iml imF(J ) = 
*-° *.-* (2TT)4 

fd*p[jdpoG(p)"j. (17) 

Therefore, if G(p) has a representation of the type (13) 
or generally of a Feynman type denominator, the prob
lem reduces to evaluation of a Feynman integral, (a) 
N= 1. Instead of multiplying J2 by F(£) one can apply 
a differential operator —(d/dp^)2 on G(p) and utilize 

J \dpj 

d \ 2 1 

dp*' L(p+aY+m2-ieY 
= - 2 i 7 T 2 , 

for tf=l, (18a) 

= 0, for JV>1. 

(b) iY=2. The operator ^(d/dQ on F(£) can be re
placed by (d/dpfj^pn on G(#), and one can utilize 

d'p-
dpAl(p+a)2+fn2-ie]N 

= 2i7r2, f o r N = 2 , 

= 0, fori\T>2, (18b) 

= oo, for N= 1. 

In the present paper the denominator function / (J ,P) 
is assumed to be singular at the origin J = 0 correspond
ing to either N= 1 or N = 2. One important point worth 
mentioning is that in both cases considered above the 
result no longer depends on any parameter involved 
in the original Feynman denominator. This is important 
in proving the relation (5). This is no longer the case, 
however, for N>2, and the relation (5) fails to be true 
in such a case, so that the divergent character of the 
theory is one of the necessary conditions for the theorem 
to be true. 

In proving Eq. (9) it is sufficient to consider only the 
connected part of the time-ordered Green function, and 

FIG. 1. An example 
of the one-meson re
ducible diagram. 

FIG. 2. An example 
of the one-meson ir
reducible diagram. 

we shall prove 

C( 

<o| 
= lim lim-

f->0 $„-X> 

rT:¥t(*+-W*—J-.ABC- • • ||0)„ 

MP) 
(19) 

For this purpose it is convenient to decompose the 
numerator into one-meson reducible and irreducible 
parts according to the structure of the corresponding 
Feynman diagrams. When the pair of nucleon lines 
originating from x+ (J/2) and x— (J/2) are connected 
to other external lines via a single meson line with self-
energy parts and can be disconnected from them by 
removing that meson line, such a Feynman diagram is 
called one-meson reducible. When this is not the case 
we have a one-meson irreducible Feynman diagram. 
This classification refers only to the two nucleon lines 
originating from the two points x+ (J/2) and x— (J/2). 
Examples of the one-meson reducible and irreducible 
diagrams are given in Figs. 1 and 2, respectively. 

The contributions of the reducible diagrams to the 
numerator of (19) can be given explicitly by 

( 0 | r [ : ^ t ( x + f / 2 ) ^ ( ^ j / 2 ) : ^ C - - - ] | 0 ) c o n n 

= — ig I d^Xid^xtffiySF\ %—, %\ \v{x\%2\y) 

XsJx2, x+-\o\Tt<p(y)ABC- • -]|0)conn 

+ (contributions from irreducible diagrams), (20) 

where all the quantities are renormalized ones. 5 / is 
the renormalized nucleon propagator defined by 

5, '(*,y) = < 0 | r [ * ( * ) , * t ( y ) ] | 0 > > (21) 

and T is the renormalized meson-nucleon vertex 
function. 

When the limit J —•> 0 is taken, the open polygon with 
two ends at x+ (J/2) and x— (J/2) is closed, and conse
quently a divergence, called a primitive divergence,12 

occurs owing to the singularity at the origin. The nature 

12 F. J. Dyson, Phys. Rev. 75, 1736 (1949). 
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of this divergence depends on the type of the correspond
ing Feynman diagram. It is clear from Fig. 1 that a self-
energy type divergence is produced in a reducible dia
gram, whereas a vertex type divergence, at worst, is 
produced in an irreducible diagram. Similarly, the 
denominator f(£,P) develops a self-energy type 
divergence. 

and hence the ratio (22) 

/ dAp exp\jp(x—V)] = 540—y). 
(2TYJ 

This concludes the proof of the relation (5). 

III. DISCUSSION OF THE THEOREM 

The proof of the theorem presented in the previous 
section rests in an essential way on the divergent charac
ter of the conventional Lagrangian theory. For instance, 
the relation (27) is valid only when the Feynman inte
grals in both the numerator and denominator diverge. 
When this is the case one can understand (27) as follows: 

In all known examples of perturbation theory, except 
for quantum electrodynamics, the self-energy diverges 
more strongly than the vertex does, so that we shall take 
it for granted in what follows. Then, in the ratio (19) 
contributions of only the reducible diagrams are relevant 
in the limit £ —» 0, and the proof of Eq. (19) reduces to 
that of a much simpler relation 

Expand the integral in the numerator in powers of 
(p2-\-y?) i*1 the neighborhood of the mass shell, then the 
first constant term, being equal to the denominator, is 
divergent, but the second term, being linear in (̂ 2+M2)> 
is convergent or less divergent than the first term, and 
all other terms are convergent. In this way only the 
first ^-independent term contributes to the ratio (27). 

When the Feynman integrals in (27) should converge, 
however, the above argument fails to hold and the ratio 
(27) turns out to be ^-dependent. Furthermore, the 
contributions from irreducible diagrams can no longer 
be discarded so that the theorem does not hold. This 
makes us suspect the applicability of the present 
theorem to quantum electrodynamics, since the self-

—ig I dAXidAx2SFToo—, xi jT(x1x2] y)SF'( x2, x-\— J 

lim lim = bA(x-y). (22) 

In order to evaluate this limiting value, we introduce 

-i 

(2T) 
SF'(X)=-—-I fdW'Sr'ip) (23) 

T(xy; z)= / d*pd^ explip(x-z)+iq(z-y)lT(p,q); (24) 
(2T)8 J 

then 

—ig / d^id^Sr'i x—, xi W(xiX2;y)SF'( x2, x-\— J 

=~- jd*pd*q expZip(x-y)-iqQSF'(q+^r(q+^, q-^Sp'L-tj , (25) 

and, similarly, 

mp)=^k- I*tf^'ittiKt*i- <-i)v(H) • (26) 

In the limit £ —> 0, the q integration gives rise to a self-energy type divergence in both the denominator and 
numerator, and we have to evaluate the ratio with reference to (15) and (18). Then, from the remark regarding 
the independence of the expression (18) on the parameters involved in the Feynman denominator, one obtains 

lim lim = 1, (27) 
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energy of the photon is zero and hence convergent. There 
is also the problem of gauge in this case and we shall 
not discuss it in this paper. 

Perhaps one interesting application of the theorem 
will be found in the theory of renormalization. If we 
take the difference 

:^(x+-y(x-~\-MP)cp(x), (28) 

this expresion is less divergent than /(£,P) at the origin 
£ = 0, so that there might be an expansion of the form 

X G - M 2 ) ^ ) + ^ , P ) (29) 

such that the last term h(x£,P) is no longer singular at 
the origin and its limiting value 

UmlimA(s,£,P) = A(*0 (30) 

is independent of the choice of the direction of P. 
Eq. (29) is given in terms of finite expressions alone 
insofar as £ is infinite. The function g will be related to 
the matrix element of ^rt(£/2)^[— (f/2)] between the 
vacuum and a nucleon pair state. The operator h(x) 
is the finite renormalized part of the normal product 
:&(x)*(x):. 

Finally, we shall emphasize again the importance of 
the divergent character of field theory for the validity 
of the theorem. Consider, for instance, the pion field 

operator defined by 

:$J[x+-)y\y&p(x—): 
dxx \ 2/ \ 2 / 

<£ (x) = lim lim : :—. 

(2P0)
1/2<01 *J - J;Px7xY5*i — J 17r,P) 

(34) 
The denominator expresses the strong interaction part 
of the 7T—fi decay amplitude in the V-A theory. If the 
denominator is finite, $(x) is generally different from 
the original field operator <p{x). The strong interaction 
of the pion is described by <p(x), whereas $(#) describes 
its weak interaction, and their high-energy behaviors 
are generally different.13 For instance, the Lehmann 
weight function for the mixed propagator 

< 0 | r [ ^ ) , ^ ( y ) ] | o > (35) 

is more convergent than that for the pion propagator 

<o|r[^),^Cv)]|o>. (36) 
However, if the denominator is divergent, the ir—p 
decay amplitude obeys a once-subtracted dispersion 
relation as opposed to the original assumption made by 
Goldberger and Trieman,14 and §(x) behaves in many 
respects in a similar way to <p(x) as postulated by Gell-
Mann and others.15 This subject is discussed at length 
in a separate paper by the present author.13 

13 K. Nishijima, Phys. Rev. (to be published). 
14 M. L. Goldberger and S. B. Treiman. Phys. Rev. 110, 1178 

(1958). 
15 M. Gell-Mann, Phys. Rev. 125, 1067 (1962), and other earlier 

papers quoted there. In connection with the present theorem, a 
particularly interesting model proposed in earlier papers is charac
terized by the equation 

3>(#)oc^(#), 


